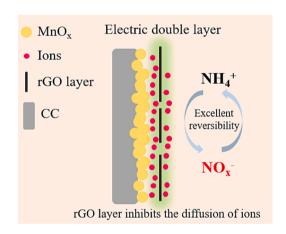


Contents lists available at ScienceDirect

Applied Energy

journal homepage: www.elsevier.com/locate/apenergy

Investigating the physical-chemical effects of reduced graphene oxide-covered manganese oxide on ammonium-ion batteries


Huaxia Chen^{a,*}, Haixin He^a, Bomiao Wang^a, Leiyun Han^a, Jian Ma^a, Dianpeng Sui^b, Chongtai Wang^a, Yingjie Hua^{a,*}

^a School of Chemistry and Chemical Engineering of Hainan Normal University, Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan
 Province, Key Laboratory of Electrochemical Energy Storage and Light Energy Conversion Materials of Haikou City, Haikou 571158, China
 ^b Department of Chemistry, College of Science, Northeastern University, Shenyang 110819, China.

HIGHLIGHTS

- ullet Reduced graphene oxide cover on the surface of MnO_x to improve the performance of MnO_x for ammonium-ion batteries.
- \bullet Reduced graphene oxide as blocking layers to inhibit the diffusion of Mn^{2+} and NO_x^- from the surface of MnO_x to electrolyte.
- Investigating the electrochemical effects of reduced graphene oxide layers on NH₄⁺ in electrolyte.

GRAPHICAL ABSTRACT

ARTICLE INFO

Keywords:
Electrochemical coverage
Reduced graphene oxide
MnO_x
Aqueous ammonium-ion batteries

ABSTRACT

Aqueous ammonium-ion batteries have attracted more attentions. Electrodeposited manganese oxide (MnO_x) electrodes stand out electrochemical behaviors for storing NH_4^+ . However, the unsatisfied conductivity and dissolution of MnO_x impede electrochemical properties of MnO_x for applying in ammonium-ion batteries. In this work, electrochemical coverage of reduced graphene oxide (rGO) layers on MnO_x was carried out to improve the properties of MnO_x as a positive electrode of ammonium-ion batteries. The improvements are attributed to three functions of rGO additives to engage as conductive layers (fast electron transportation), blocking layers (inhibition of Mn^{2+} diffusion) and capacitive behaviors (adsorption of Mn^{2+} and NO_x^-), which makes sure the excellent rate capability (109 mAh g⁻¹ at 5 A g⁻¹) and cycling stability (92.6% after 1000 cycles) of rGO_{60}/MnO_x . In addition, we also studied the redox of NH_4^+ on rGO layers to investigate the stability of electrolyte, and the redox of NH_4^+ on rGO layers is highly reversible and low active, which implies that the rGO is suitable to be a

E-mail addresses: chenhx@hainnu.edu.cn (H. Chen), 521000hua282@sina.com (Y. Hua).

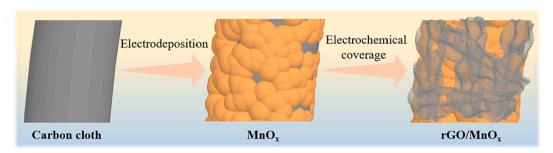
^{*} Corresponding authors.

1. Introduction

Aqueous rechargeable batteries have many superior advantages of low cost of the electrolyte and manufacture, inherent safety and environmental friendliness compared with nonaqueous battery using organic electrolyte. Sodium (Na⁺) [1], potassium (K⁺) [2], magnesium (Mg²⁺) [3], calcium (Ca²⁺) [4], zinc (Zn²⁺) [5–7] and aluminum (Al³⁺) [8] can be charge carriers being stored in appropriate host electrodes in aqueous electrolyte. Additionally, ammonium ion (NH₄⁺) can also be charge carriers being stored in host electrodes in aqueous electrolyte through intercalation [9] or H-bond [10]. NH₄⁺ as charge carriers stand out due to its abundant resources (low cost), small hydrated ionic size (3.31 Å) (fast diffusion) and low molar mass (18 g mol⁻¹) (high gravimetric specific capacity) [11].

For electrolytes, ammonium salt dissolved in water is directly engaged as electrolyte, such as NH₄Ac, (NH₄)₂SO₄ and NH₄NO₃. For electrode materials, many attempts have been proposed. For example, the pioneering work on Prussian blue analogues (PBAs) in 2012 [12], subsequently Ti₃C₂ MXene [13], organic solids (polyaniline [14] etc.) and metal oxide (titanic acid [15], V₂O₅ [16], MoO₃ [17] etc.), which were studied from the aspects of electrochemical performance and storing mechanism of NH₄⁺. Noteworthy, Song et al. [10] firstly reported in 2021 that NH₄⁺ can be stored in electrodeposited manganese oxide (MnO_x) by the formation of H-bond between NH_4^+ and the MnO_x layers, which delivered a high specific capacity of 176 mAh g⁻¹. Besides electrochemical properties, the electrodeposition is a convenient and practical strategy to obtain earth-abundant MnO_{x} electrode materials. However, it is recognized that manganese oxide-based electrode possesses an unsatisfied electrical conductivity compared with some carbon materials with high electrical conductivity such as carbon nanotube and graphene. The unsatisfied electrical conductivity can lead to a low efficiency of the conversions between chemical energy and electric energy during charging/discharging process. Furthermore, many researches emphasized the phenomenon of dissolution of manganese oxide (conversion of high valence Mn into Mn²⁺) during charging/discharging process in aqueous electrolyte systems [18-20], and the chemical instability of manganese oxide induces the electrochemical instability of manganese oxide during long-term cyclic process. Additionally, according to E-pH diagrams of nitrogen element, NH₄⁺ can be electrochemically oxidized to NO₂ and NO₃ in positive potential regions [21,22], and the potential instability of electrolyte needs to be carefully considered in the process of designing electrodes for practical applications of ammonium-ion batteries. Except for above problems, the low voltage of many aqueous ammonium-ion batteries is also a pivotal quandary for further applications, which should be seriously considered for designing aqueous ammonium-ion batteries in the future [23].

Integrated considerations of poor conductivity of manganese oxide, dissolution of manganese oxide and the oxidation of NH $_+^+$, adopting tight


and incomplete coverage of reduced graphene oxide (rGO) layers on MnO_x may be a feasible strategy to improve the performance of MnO_x for applying MnO_x in ammonium-ion batteries. rGO layers could improve the conductivity of whole electrode, which raises the effective utilization of MnO_x resulting in improved rate capability of MnO_x-based electrode. The existence of narrow space between rGO layers and MnO_x could restrict the diffusion of Mn^{2+} and NO_x^- into bulk electrolyte, which guarantees the regenerations of MnO_x and NH₄ from Mn²⁺ and NO_x resulting in improved stability of ammonium-ion batteries. Based on above strategy, this work used electrochemical methods to initially electrodeposit the MnO_x on carbon cloth, and the rGO layers subsequently covered on the surface of MnO_x to fabricate rGO/MnO_x electrode to apply in ammonium-ion batteries as illustrated in Scheme 1. The physical-chemical effects of rGO layers on MnOx was investigated through a series of characterizations, electrochemical determinations and systematic analyzations of experimental data.

2. Results and discussion

2.1. Electrochemical coverage of rGO layers on MnOx

For synthesis of rGO/MnOx, MnOx and rGO are successively electrodeposited on carbon cloth. The details can be seen in Supporting Information. The Mn²⁺ can be oxidated on carbon cloth, which can reflect on the appearance of strong redox peak of carbon cloth in MnAc₂ electrolyte as shown in Fig. S1. Aiming to quickly obtain MnOx, the MnO_x were electrodeposited on carbon cloth at an anodic current of 20 mA cm⁻² as shown in Fig. 1a, and the morphology of MnO_x are sphere with the aggregation of the dense nanoparticles inset of Fig. 1a. According to the reported work [8], the MnOx will undergo a morphological transformation during initial charging/discharging cycles in NH₄Ac electrolyte. Hence, the stable morphology is required to be found, otherwise the rGO layers could break and fall off the MnO_v as shown in Fig. S2a and Fig. S2b. It is obvious that the dense nanoparticles grow up after 5 charging/discharging cycles (Fig. 1b), then the aggregated nanoparticles transform into the aggregated slices after 20 charging/discharging cycles (Fig. 1c), finally the size of aggregated slices is unchanged after 40 charging/discharging cycles compared with these after 50 charging/discharging cycles (Fig. 1d). In this case, MnO_x after 40 cycles was selected to be stable substrates to electrochemically cover rGO layers.

The electrochemical coverage of rGO layers was operated in a two-electrode cell at a constant current of 1 mA cm $^{-2}$ as shown in Fig. 2a. Graphite foil and MnO $_{\rm x}$ on carbon cloth were used as anode and cathode, respectively, and 0.1 mg mL GO with 0.01 M Na $_{\rm 2}$ SO $_{\rm 4}$ was used as electrolyte. To avoid the effect of O content in MnO $_{\rm x}$ on measurement of O content in graphene oxide, the carbon cloth was directly covered by graphene oxide to investigate the O content of graphene oxide (Fig. 2b).

Scheme 1. The process of preparing rGO/MnO_x on carbon cloth using electrochemical methods.

Fig. 2c and Fig. 2d show the element distributions of C and O. The amount of O in GO (Fig. S3) is deceased after electrochemically covering on carbon cloth (Fig. 2c and Fig. 2d) indicating the reduction of GO during cathodic reactions. The amounts of rGO layers on MnOx is different at electrodeposited time of 60 s, 150 s and 300 s. It is obvious from the SEM images that rGO layers partially cover on MnO_x tightly after 60 s (Fig. 2e). The MnO_x was covered by rGO layers, but with a few small holes after 150 s (Fig. 2f). The rGO layers completely cover on MnO_x without any holes after 300 s (Fig. 2g). Depending on different coverage times, the rGO/MnOx is denoted as rGO60/MnOx, rGO150/ MnOx and rGO300/MnOx, respectively. XRD patterns of MnOx and rGO60MnOx display a similar characteristic peak of carbon cloth indicating the amorphous MnOx on carbon cloth and in rGO60/MnOx as shown in Fig. 2h. Besides, there is no obvious change in the XPS of Mn 2p_{1/2} of MnO_x and rGO₃₀₀/MnO_x as shown in Fig. 2i, which demonstrates that the valence state of MnOx is not changed after cathodic reactions of covering rGO layers.

2.2. Electrochemical performance of MnO_X and rGO/MnO_X in NH_4^{\downarrow} electrolyte

This section mainly aims to discuss the electrochemical effects of rGO layers on MnO_x in $NH_{\rm d}^+$ electrolyte by electrochemical comparisons of MnO_x , rGO_{30}/MnO_x , rGO_{60}/MnO_x , rGO_{150}/MnO_x and rGO_{300}/MnO_x . Fig. 3a shows the CV curves of MnO_x , rGO_{30}/MnO_x , rGO_{60}/MnO_x , rGO_{150}/MnO_x and rGO_{300}/MnO_x . The CV curve of rGO_{30}/MnO_x shows a similar peak current compared with that of MnO_x . This may be related to the less coverage of rGO on MnO_x in a short deposition time (30 s), and

the rGO cannot form connected layers to work as conductive layers as shown in Fig. S2c and Fig. S2d. The peak current of rGO/MnO_x is higher than that of MnOx indicating that the rGO layers form another channel for electron transportations to the whole MnO_x electrode (rGO/MnO_x) during NH₄⁺ intercalation/deintercalation process. Particularly, the coverage of rGO layers could arouse the activity of MnO_x far from the carbon cloth and near to rGO layers, which improves the effective utilization of MnO_x. Among rGO₆₀/MnO_x, rGO₁₅₀/MnO_x and rGO₃₀₀/ MnO_x , the peak currents follow the order of $rGO_{60}/MnO_x > rGO_{150}/$ $MnO_x > rGO_{300}/MnO_x$, which can be attributed to the thickness of rGO layers on MnO_x. Thick rGO layers leads to less holes on the surface of MnO_x , which impedes the diffusions of NH_4^+ from the bulk electrolyte to the surface of MnO_x during electrochemical process. Besides, thick rGO layers results in poorer conductivity of rGO layers, which hinders the electron transportations during electrochemical process. The rGO₆₀/ MnO_x delivers highest specific capacity of 173 mAh g⁻¹ compared with $\rm MnO_{x}$ (149 mAh $\rm \,g^{-1}),\,rGO_{30}/MnO_{x}$ (151 mAh $\rm \,g^{-1}),\,rGO_{150}/MnO_{x}$ (163 mAh g^{-1}) and rGO_{300}/MnO_x (155 mAh g^{-1}) as shown in Fig. 3b. Through the comparison between the CV and GCD curves, there is no obvious improvement of rGO₃₀/MnO_v compared to MnO_v. Hence, the sample of rGO₃₀/MnO_x is ignored in the following discussions. Otherwise, rGO₆₀/MnO_x also presents an improved rate capability as shown in Fig. 3c, and the specific capacity of rGO₆₀/MnO_x decreases from 173 mAh g^{-1} (0.5 A g^{-1}) to 109 mAh g^{-1} (5 A g^{-1}), while the specific capacity of MnO_x decreases from 149 mAh g^{-1} (0.5 A g^{-1}) to 73 mAh g^{-1} $(5 \text{ A g}^{-1}).$

Cycling stability is an important parameter to evaluate batteries. Fig. 3d shows the cycling stability of MnO_x and $\text{rGO}_{60}/\text{MnO}_x$. The

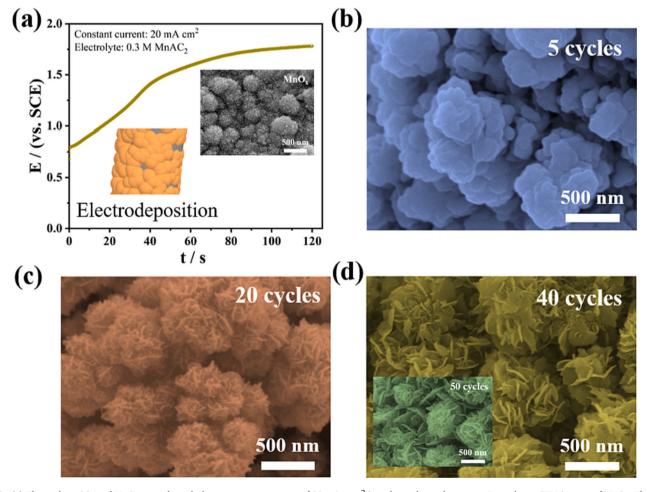


Fig. 1. (a) Electrodeposition of MnO_x on carbon cloth at a constant current of 20 mA cm⁻² in a three-electrode system. Inset shows SEM images of MnO_x . The SEM images of MnO_x after 5 cycles (b), 20 cycles (c) and 40 cycles (d) with inset of 50 cycles in 0.5 M NH_4Ac electrolyte.

specific capacity of MnO_v decreased from 150 mAh g⁻¹ to 140 mAh g⁻¹ at 0.5 A g⁻¹ after 100 cycles. Compared with MnO_x, the specific capacity of rGO₆₀/MnO_x is almost unchanged (form 171 mAh g⁻¹ to 170 mAh g⁻¹) after 100 cycles (inset of Fig. 3d). Even at a high current density of 5 A g⁻¹, the specific capacity of rGO₆₀/MnO_x decreased from 108 mAh g⁻¹ to 100 mAh g^{-1} (92.6%) as shown in Fig. S4. The cycling stability of MnO_x is related to the chemical stability of MnO_x. We studied the element in electrolyte using ICP-mass, and the concentration of Mn ions in electrolyte is 21.02 mg L^{-1} after 1000 cycles when the MnO_{x} serves as a working electrode as listed in Table 1. However, the concentration of Mn ion in electrolyte is 15.37 mg L^{-1} (Equivalent to 0.39 mg MnO and 0.49 mg MnO_2) when the rGO_{60}/MnO_x serves as a working electrode, which is lower than 21.02 mg L^{-1} (Equivalent to 0.54 mg MnO and 0.66mg MnO₂). The Mn ions in electrolyte probably dissolved from MnO_x during charging/discharging process. The rGO could be blocked layers partially inhibiting Mn ion to diffuse into electrolyte far from electrode surface, so the Mn ion has more chances to regenerate MnOx on the surface of MnO_v. Hence, the rGO layers indirectly improve the chemical stability of MnO_x, which improves cycling stability of MnO_x. Moreover, we noticed that the UV-visible spectroscopy of NH₄Ac aqueous shows different absorption peaks after cycling in MnO_v- and rGO₆₀/MnO_vbased batteries compared with original NH₄Ac indicating the decomposition of NH₄Ac as shown in Fig. S5a, because the NH₄ could be theoretically oxidized to NO2 and NO3 based on the E-pH diagram of Nitrogen (Fig. S5b). Further, we compared the ion species of electrolyte

between original electrolyte and cycled electrolyte (MnO_v- and rGO₆₀/ MnO_x-based battery) using Ion Chromatography as listed in Table 1. The NO₂ (314.2 mg L⁻¹) was detected in electrolyte after 1000 cycles when the MnO_x serve as a working electrode. This proves the instability of NH₄ in electrolyte, which can be oxidized into NO₂ by MnO_x during long-term cycles. The instability of NH₄ (intercalation/deintercalation agents) may give rise to the instability of electrochemical performance. Similarly, the blocking layers in rGO₆₀/MnO_x could also partially impede the diffusion of NO₂, which could be probably reduced into NH₄ on the surface of MnO_x resulting in less NO₂ formations (188.8 mg L⁻¹) in the system of rGO_{60}/MnO_x during electrochemical cycles. Besides, the NO3 cannot be detected by Ion Chromatography owning to less or no NO₃ in electrolyte whose concentration is below the detecting limit of Ion chromatography. Less or no NO₃ indicates that redox couple of NO₃/NO₂ exhibits an excellent reversibility on the surface of electrode. According to above discussions, rGO layers can improve the stability of MnO_x-based ammonium-ion batteries through indirect enhancement of chemical stability of MnO_v and NH₄.

Electrochemical impedance spectroscopy was used to further clarify the electrochemical processes of MnO_x, rGO₆₀/MnO_x, rGO₁₅₀/MnO_x, and rGO₃₀₀/MnO_x electrodes. Fig. 4a presents the Nyquist plots of MnO_x, rGO₆₀/MnO_x, rGO₁₅₀/MnO_x, and rGO₃₀₀/MnO_x. It is obvious that the imaginary part of the impedance sharply increases for rGO₆₀/MnO_x, rGO₁₅₀/MnO_x, and rGO₃₀₀/MnO_x. The plot tends to a vertical line characteristic especially for rGO₆₀/MnO_x indicating the capacitive

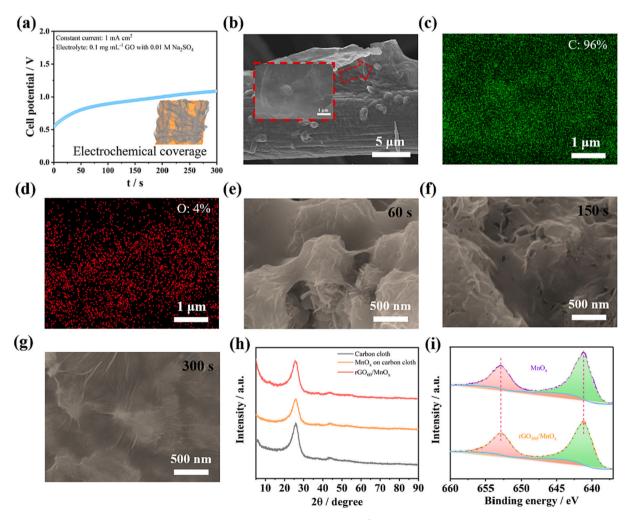


Fig. 2. (a) Electrochemical coverage of rGO layers on MnO_x at a constant current of 1 mA cm $^{-2}$ in a two-electrode cell. The SEM image (b) and element distributions (c and d) of rGO on carbon cloth. The SEM images of rGO_{60}/MnO_x (e), rGO_{150}/MnO_x (f) and rGO_{300}/MnO_x (g). (h) The XRD patterns of carbon cloth, MnO_x on carbon cloth and rGO_{60}/MnO_x . (i) XPS $Mn\ 2p_{1/2}$ spectra of MnO_x and MnO_x and

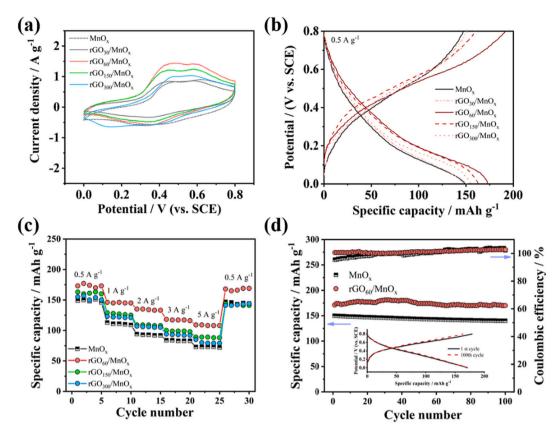


Fig. 3. (a) CV curves of MnO_x, rGO_{30}/MnO_x , rGO_{60}/MnO_x , rGO_{150}/MnO_x and rGO_{300}/MnO_x . (b) GCD curves of MnO_x, rGO_{30}/MnO_x , rGO_{60}/MnO_x , rGO_{150}/MnO_x and rGO_{300}/MnO_x . (c) Rate capability of MnO_x, rGO_{60}/MnO_x , rGO_{150}/MnO_x and rGO_{300}/MnO_x . (d) Cycling stability and coulombic efficiency of MnO_x and rGO_{60}/MnO_x at the current density of 0.5 A g^{-1} .

Table 1 The concentration of species in initial electrolyte and electrolyte after 1000 cycles at 5 A $\rm g^{-1}.$

Species	Concentration of ion species in electrolyte (mg ${\bf L}^{-1}$)		
	Initial electrolyte	In MnO _x	In rGO ₆₀ /MnO _x
Mn ²⁺	/	21.02	15.37
NH_4^+	1068	990.5	996.9
NO_2^-	/	314.2	188.8
NO_3^-	/	/	/

The concentration of Mn^{2+} was measured by ICP-mass; The concentrations of NH_4^+ , NO_2^- and NO_3^- were measured by Ion Chromatography.

behavior of rGO_{60}/MnO_x electrode as the equation shown in Fig. 4a. Identically, the real part of capacitance (C') corresponds to the capacitance of the electrode at low frequency value [24]. Fig. 4b shows a higher capacitance of rGO60/MnOx compared with rGO150/MnOx, rGO₃₀₀/MnO_x and MnO_x. The capacitance of rGO₆₀/MnO_x, rGO₁₅₀/ MnO_x and rGO₃₀₀/MnO_x is gradually decreased as shown in Fig. 4b. This could be related to the thickness of rGO layers. Thick rGO layers exhibit the properties of small specific surface area and low conductivity because of the restack of rGO sheets. It is also reflected from the impedance (Bode plot) of MnO_x, rGO₆₀/MnO_x, rGO₁₅₀/MnO_x, and rGO₃₀₀/MnO_x as shown in Fig. 4c. Bode plot shows that the impedance value of rGO₆₀/MnO_x is lower than that of MnO_x [25]. As discussed above, rGO layers can be conductive components during charging/discharging process. At the same time, rGO layers can also provide extra capacitance. Though the capacitance of rGO layers is low, the electric double layer could electrochemically adsorb ions such Mn²⁺ and NO_x (a probable part of the electric double layer), which forces these ions diffuse into electrolyte not far from electrode surface. The electric double layer formed by rGO layers can be divided into inner layer and outer layer as shown in Fig. 4d. A narrow space is constructed between inner layer and MnO_x surface, which is the main region to electrochemically adsorb Mn^{2+} and NO_x^- . Outer layer could also electrochemically adsorb Mn^{2+} and NO_x^- which are not far from the outer surface of the rGO layers. This part of Mn^{2+} and NO_x^- in the bulk electrolyte originates from the narrow space forming by the surface of MnO_x and the inner surface of rGO. In a conclusion, the electric double layer formed by rGO layers and ions contribute another part of cycling stability.

2.3. The effects of rGO layers on NH₄⁺

According to the *E*-pH diagram of Nitrogen, the NH₄⁺ is instable in positive potentials. Through a simulative calculation of 0.5 M NH₄Ac (aqueous solution) using Visual MINTEQ (Table S1), there are chemical equilibriums between NH₄ and NH₃, and NH₃ could undergo a series of electrochemical oxidations [26-28]. Therefore, the rGO layers serving as additive components should be investigated (whether rGO can catalyze oxidation of NH₄⁺) to make sure the rationality of applying rGO in ammonium-ion batteries. Fig. 5 shows the CV curves of carbon cloth and rGO layers on carbon cloth in 0.5 M NH₄Ac in the working potential from 0 to 0.8 V. The CV curve of rGO shows two complete and reversible peaks which may be attributed to the formations of NO and NO₂, respectively. When the potential reaches to 0.8 V of rGO layers-covered electrode, there is an uncomplete oxidation peak possibly attributing to the formation of NO_3^- indicating the low degree oxidation of NH_4^+ to NO₃. This may be the reasons for hardly detecting NO₃ in the electrolyte using IC after 1000 cycles. The reversible peaks with low current demonstrate that rGO layers can catalyze the redox of NH₄⁺ in a low degree. However, due to the enhanced inhibition of rGO layers, the NO_x

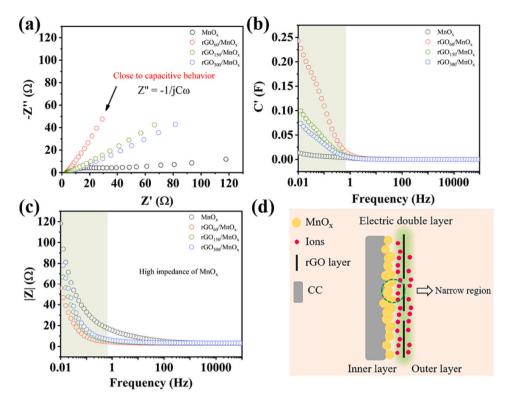


Fig. 4. (a) Nyquist plots of MnO_x, rGO_{60}/MnO_x , rGO_{150}/MnO_x and rGO_{300}/MnO_x . (b) The real part vs. frequency for MnO_x, rGO_{60}/MnO_x , rGO_{150}/MnO_x and rGO_{300}/MnO_x . (c) Bode plots of MnO_x, rGO_{60}/MnO_x , rGO_{60}/MnO_x , rGO_{60}/MnO_x and rGO_{300}/MnO_x . (d) The schematic picture for explaining the narrow region originating from electric double layer of rGO layer.

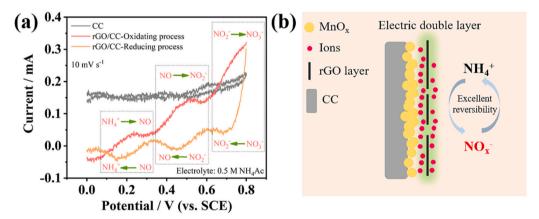


Fig. 5. (a) The CV curves of carbon cloth and rGO/CC in 0.5 M NH₄Ac. (b) The schematic picture for electrochemical reactions of NH₄⁺ on rGO layers.

could exist near to the rGO layers for the regeneration of NH_{4}^{+} as shown in Fig. 5b, which guarantees the cycling stability of ammonium-ion batteries. Hence, the rGO layers can be additive components for constructing the electrode of ammonium-ion batteries.

3. Conclusions

rGO layers were electrochemically cover on the surface of MnO_x , which can improve the electrochemical performance of MnO_x applied in ammonium-ion batteries. The rGO_{60}/MnO_x shows an enhanced rate capability (109 mAh g^{-1} at 5 A g^{-1}) and cycling stability (92.6% after 1000 cycles). The improved performance of ammonium-ion batteries from rGO layers can be summarized as three aspects. First, the rGO layers can be conductive components to facilitate electrons transportation to whole MnO_x electrodes, which leads to an optimized rate capability of rGO_{60}/MnO_x . Second, the rGO layers can be blocking layers

to inhibit the $\rm Mn^{2+}$ and $\rm NO_x^-$ diffuse far from electrode, which leads to an optimized cycling stability of $\rm rGO_{60}/\rm MnO_x$. Based on the function of blocking layers, the capacitive behavior of rGO layers also boost the blocking functions by electrochemical adsorptions of $\rm Mn^{2+}$ and $\rm NO_x^-$. In addition, as a component of $\rm rGO_{60}/\rm MnO_x$, the redox of $\rm NH_4^+$ or rGO layers show high reversibility and low current, indicating that less $\rm NH_4^+$ could be oxidated, and part of the oxidated $\rm NH_4^+$ could be regenerated into $\rm NH_4^+$ during electrochemical cycles. Hence, the rGO is suitable for applying in ammonium-ion batteries as conductive and blocking layers.

Author contributions

Huaxia Chen: Design and complete experiments, Process experiment data, Draw the figure, Write the manuscript. Haixin He: Conduct SEM characterization of materials and analysis. Bomiao Wang: Conduct XRD characterization of materials and analysis. Leiyun Han: Interpretation of

data and results. Jian Ma: Interpretation of data and results. Dianpeng Sui: Writing, editing, and interpretation of data and results. Chongtai Wang and Yingjie Hua: Funding acquisition and Project administration.

CRediT authorship contribution statement

Huaxia Chen: Writing – review & editing, Writing – original draft, Investigation. Haixin He: Data curation. Bomiao Wang: Data curation. Leiyun Han: Formal analysis. Jian Ma: Formal analysis. Dianpeng Sui: Writing – review & editing. Chongtai Wang: Writing – review & editing. Yingjie Hua: Writing – review & editing.

Declaration of Competing Interest

There are no conflicts to declare.

Data availability

Data will be made available on request.

Acknowledgements

This work was supported by the Hainan Normal University Student Innovation and Entrepreneurship Open Fund (Banyan Tree Fund) (HSRS21-058).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.apenergy.2023.122067.

References

- Choi D, Lim S, Han D. Advanced metal-organic frameworks for aqueous sodiumion rechargeable batteries. J Energy Chem 2021;53:396–406.
- [2] Husmann S, Zarbin AJG, Dryfe RAW. High-performance aqueous rechargeable potassium batteries prepared via interfacial synthesis of a Prussian blue-carbon nanotube composite. Electrochim Acta 2020;349:136243.
- [3] Sun X, Duffort V, Mehdi BL, Browning ND, Nazar LF. Investigation of the mechanism of mg insertion in Birnessite in nonaqueous and aqueous rechargeable mg-ion batteries. Chem Mater 2016;28:534–42.
- [4] Adil M, Sarkar A, Roy A, Panda MR, Nagendra A, Mitra S. Practical aqueous calcium-ion battery full-cells for future stationary storage. ACS Appl Mater Interfaces 2020;12:11489–503.
- [5] Zhu K, Wu T, Sun S, Wen Y, Huang K. Electrode materials for practical rechargeable aqueous Zn-ion batteries: challenges and opportunities. ChemElectroChem. 2020;7:2714–34.

- [6] Meng J, Song Y, Qin Z, Wang Z, Mu X, Wang J, et al. Cobalt–nickel double hydroxide toward mild aqueous zinc-ion batteries. Adv Funct Mater 2022;32: 2204026.
- [7] Wang Z, Song Y, Wang J, Lin Y, Meng J, Cui W, et al. Vanadium oxides with amorphous-crystalline heterointerface network for aqueous zinc-ion batteries. Angew Chem Int Ed 2023;62:e202216290.
- [8] Cai Y, Chua R, Srinivasan M. Anode materials for rechargeable aqueous Al-Ion batteries: progress and prospects. ChemNanoMat. 2022;8:1–17.
- [9] Wu X, Qi Y, Hong JJ, Li Z, Hernandez AS, Ji X. Rocking-chair ammonium-ion battery: a highly reversible aqueous energy storage system. Angew Chem Int Ed 2017;56:13026–30.
- [10] Song Y, Pan Q, Lv H, Yang D, Qin Z, Zhang MY, et al. Ammonium-ion storage using electrodeposited manganese oxides. Angew Chem Int Ed 2021;60:5718–22.
- [11] Zhang R, Wang S, Chou S, Jin H. Research development on aqueous ammoniumion batteries. Adv Funct Mater 2022;32:2112179.
- [12] Wessells CD, Peddada SV, McDowell MT, Huggins RA, Cui Y. The effect of insertion species on nanostructured open framework Hexacyanoferrate battery electrodes. J Electrochem Soc 2011;159:A98–103.
- [13] Lukatskaya MR, Mashtalir O, Ren CE, Dall'Agnese Y, Rozier P, Taberna PL, et al. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science. 2013;341:1502–5.
- [14] Li H, Yang J, Cheng J, He T, Wang B. Flexible aqueous ammonium-ion full cell with high rate capability and long cycle life. Nano Energy 2020;68:104369.
- [15] Holoubek JJ, Jiang H, Leonard D, Qi Y, Bustamante GC, Ji X. Amorphous titanic acid electrode: its electrochemical storage of ammonium in a new water-in-salt electrolyte. Chem Commun 2018;54:9805–8.
- [16] Xing L, Chen H, Wen X, Zhou W, Xiang K. High performance of co-doped V_2O_5 cathode material in V_2O_5 -saturated (NH₄)₂SO₄ electrolyte for ammonium ion battery. J Alloys Compd 2022;925:166652.
- [17] Liang G, Wang Y, Huang Z, Mo F, Li X, Yang Q, et al. Initiating hexagonal MoO₃ for superb-stable and fast NH⁺₄ storage based on hydrogen bond chemistry. Adv Mater 2020;32:1907802.
- [18] Zhang N, Cheng F, Liu Y, Zhao Q, Lei K, Chen C, et al. Cation-deficient spinel ZnMn₂O₄ cathode in Zn(CF₃SO₃)₂ electrolyte for rechargeable aqueous Zn-Ion battery. J Am Chem Soc 2016;138:12894–901.
- [19] Liu W, Zhang X, Huang Y, Jiang B, Chang Z, Xu C, et al. β-MnO₂ with proton conversion mechanism in rechargeable zinc ion battery. J Energy Chem 2021;56: 265–72
- [20] Wang Z, Qin Q, Xu W, Yan J, Wu Y. Long cyclic life in manganese oxide-based electrodes. ACS Appl Mater Interfaces 2016;8:18078–88.
- [21] Schweitzer GK, Pesterfiel LL. The aqueous chemistry of the elements. Oxford University Press: 2010.
- [22] Kim KW, Kim YJ, Kim IT, Park GI, Lee EH. Electrochemical conversion characteristics of ammonia to nitrogen. Water Res 2006;40:1431–41.
- [23] Zheng R, Li Y, Yu H, Zhang X, Yang D, Yan L, et al. Ammonium ion batteries: material, electrochemistry and strategy. Angew Chem Int Ed 2023;62:e202301629.
- [24] Taberna PL, Simon P, Fauvarque JF. Electrochemical characteristics and impedance spectroscopy studies of carbon-carbon supercapacitors. J Electrochem Soc 2003;150:A292.
- [25] Akbarinezhad E, Faridi HR. Different approaches in evaluating organic paint coatings with electrochemical impedance spectroscopy. Surf Eng 2013;24:280–6.
- [26] Warna J, Turunen I, Salmi T, Maunula T. Kinetics of nitrate reduction in monolith reactor. Chem Eng Sci 1994;49:5763–73.
- [27] Vooys AcAd, Santen Rav, Veen JaRv. Electrocatalytic reduction of NO_3^- on palladiumrcopper electrodes. J Mol Catal A Chem 2000;154:203–15.
- [28] Kim K-W, Kim Y-J, Kim I-T, Park G-I, Lee E-H. The electrolytic decomposition mechanism of ammonia to nitrogen at an IrO₂ anode. Electrochim Acta 2005;50: 4356–64